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Chapter 1

Introduction

Mathematics is a field that is important in our day-to-day lives. From a wery
young age, our children are taught the fundamentals of arithmetic. As they
progress through middle school and high school, students learn algebra, geom-
egtry, trigonometry, and even calculus. In college, the mathematical knowledge
we impart to these students becomes more specialized. Economics students learn
about derivatives and their use in reasoning about changes in markets. Future
physicists use caloulus to model the properties of matter and energy.

Those who continue an to advanced courses and graduste degrees learn of the
beautiful abstractions that provide a common basis for much of the mathematios
they knew most of their lives. It is at this point that they truly understand the
intricate hierarchy that binds the entire field of mathematics and all its applica-
tions, such as the one ses in Figure 1.1, Within each area, the hierarchy gets more
specific, branching into many subtopics. For example, the area of differential ge-
ometry breaks down further into the geometry of curves, the geometry of surfaces,
Riemannian geometry, and several others.

Each part of this hierarchy has its own set of definitions, theorems, axioms,
and proofs that are fundamental to that area. Often, theorems in subareas are
specialized versions of those that appear higher up in the hierarchy. It may be the
case that the proof of a specialized theorem is easier in a subarea becauss one can
take advantage of certain properties that are not true of the more general area.
As an example, many mathematical structures with structure-preserving maps

including sets, monoids, and rings can be viewed more generally as categories with



Figure 1.1: A schematic view of the branches of mathematics [101]

morphisms. Some of the properties of the operations on these structures are results
regarding morphisms in category theory.

The teaching of mathematics starts with simple, specific concepts and then
moves to more general concepts that encompass those already learned as one gets
more advanced., Research in mathematics can work in both directions: one starts
from more specific ideas and generalizes them; or, one takes general ideas and
specializes them to work in a specific instance. It is not always clear which way
one is going because the area of mathematics 1s so large; one may write a paper
establishing some new theorsma in a subarea of mathematies, only to diseover that
the work iz closely related to or a special case of work in a more general arca of
which the author was not aware.

The relationships in mathematies are becoming richer as the body of mathemat-
ical knowledge is constantly increasing and changing, The number of mathematics

journals has continued to increase over the last century and a half, as demon-



strated in Figure 1.2, These journals have continued to become more specific in

their toples, indicating that the study of mathematics is becoming more advanced.
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If we look specifically in the field of computer science, where mathematics plays
a prominent rofe, we see a dramatic increase in the number of papers published
over the years. For example, the Digital Bibliography and Library Praject (DBLFP),
which provides bibliographic information from papers in major computer science
conferences and journals, has seen a dramatic increase in papers, demonstrated in
Figure 1.3.

With an increase in the amount and complexity of the information, the orga-
nization of mathematical knowledge becomes more important and more difficult.
This emerging area of research is referred to as mathematical knowledge man-
agement (MKM). As summarized by Buchberger, one of the organizers of the

first Mathematical Knowledge Management Workshop, the phrase “mathematical
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Figure 1.3: Distribution of publication dates for computer science papers [2]

knowledge management” should be parsed as (mathematical knowledge) manage-
ment as opposed to mathematical (knowledge management), i.e., examining the
problem of organizing and disseminsting mathematical knowledge [20]. He goes

ot ko summarize the primary issues in the field:
s How do we retrieve matliematical knowledge from existing and future sources?
o How do we build future mathematical knowledge bases?

« How do we make the mathematioal knowledge bases svailable to mathemati-

ciansT

At least part of MKM's development lias come from the growing power of
and interest in automoled theorem proving, using computer programs o prove
mathematical theorems. Using antomated theorem provers to find the proofs for
theoremns offers several advantages. First of all, much of the process can be auto-
mated through the use of heuristies called tactics and lacticals. These heuristics

perform basic steps of reasoning, including search for the correct steps to take.



With constantly increasing computer power, more efficient tactics, and research
into new search strategies, the portion of the theorem-proving process that can be
antomated continues to increase.

The primary contribution of automated theorem proving that is relevant to
MEKM iz the formalization of mathematies. A proof written by hand by a math-
ematician tends to have some steps that are informal or appeal to some intuition
on the part of the reader. We even see phrases like “the proof is trivial® or *“this
shtep is obvious” in proofs in papers and textbooks. In contrast, a proof produced
by a computer program must be rigorous, with every detail justified by a step of
reasoning that follows in the domain of the thecrem being proven; there iz no such
thing as “trivial” or “obvious” for an automated theorem prover.

The body of formalized mathematice has continued to increase, with results
spanning all major branches of mathematics. As with any large body of informa-
tion, there is a desire to organize all of these formal theorems and proofs into a
digital library, We can then take advantage of the formal structure of these proofs
for research and teaching. From a research perspective, we can use the formal
library to find theorems useful in a proof we are working on or to discover re-
lated theorems based on common proof steps. For teaching, a formalized library of
mathematics provides a structured way to organize one’s presentation of complex
theorems and proofs related to one another,

The basis of any formalized structure for mathematics is a library of proofs and
theorems. Large libraries do exist in the automated theorem provers. However,
these libraries are usually implemented at the system level, meaning they are not
defined with the same level of formalism as the proofs themselves, which rely on

a strong underlying proof theory with rules for their creation. In the same way



a proof-theoretic approach can formalize the steps of a proof, we want & proof-

theoretic approach that can formalize the relationships between proofs in a library.

The library should have the following properties:

1

Independence The library should be independent of the underlying logic
for which proofs are being done; we should be able to organize proofs for any

area of mathematics.

Structure The formal layout of the library should reflect relationships
between theorems. In other words, if we regard a proof to be a lemmea used
within a larger proof, then the proofs should be such that the relationship is

captured inherently in the structure.

An underlying formalism Proof-theoretic rules should be the basis of
manipulating the library, They shonld formally define the operations of
adding & proof to the library, removing a proof from the library, and using
one proof in another. These rules should be defined at the same level as the

rules nsed for creating proofs.

Adaptability The organization of the proofs in the library should be
able to change based on the desire to highlight different relationships. For
example, one may want to change the structure to group different theorems
based on a certain set of lemmas they all use. Changes should be formally

described by rules.

Presentability The formal library needs itself either to be easily read by
humans or to be translatable into a format that can be read by humans. The

format should reflect the structure of the library and, ideally, be alterable



in a way controlled by the underlying proof-theoretic rules for adapting the

library.

The libraries in all of the popular antomated theorem provers including Coq
[105]), NuPRL [71], Isabelle [108], and PVS [89] exhibit the first property. The
second property, structure, is found in theorem provers in an informal way, Oxne
can declare formulas to be lemmas instead of theorems, however, no distinction is
made by the systems themselves., Progress has been made, particularly in Isabelle,
toward providing some more structure to the library of theorems.

Properties 3 and 4 are not exhibited by any of the popular theorem provers.
Ag stated, the library is a system-level construct separated from the underlying
logic governing the creation of proofs. Therefore, no formalism controls the li-
brary. Combined with the fact that there is no structure inherent in the library,
adaptability is extremely limited.

Presentability has been addressed by the theorem prover community by taking
existing libravies from automated theorem provers and transforming them into a
readable format, usually for presentation on the Internet.

In this thesis, we present a proof-theoretic approach to mathematical knowledge
management that exhibits all five desired properties. In Chapter 2, we discuss
previous work from several aspects of the problem, including proof reuse and library
organization. In Chapter 3, we set the basis for a library that exhibits properties 1
and 3 by discussing a publish-cite system presented by Kozen and Ramanarayanan
[68]. We lock at an implementation of this library in an interactive theorem prover
for Kleene algebra with tests [63] in Chapter 4. We satisfy properties 2, 4, and
5 by formally defining a hierarchical structure for the mathematical library in

Chapter 5. In Chapter 6, we dizcuss user interfaces for theorem provers and present



a protofype theorem prover for Kleene algebra with tests that presents the library
of theorems in an intuitive, structured format. We extend the formalism of the
library to include tactics, allowing them to be treated at the same level as proofs
and the library itself, in Chapter 7. Finally, we present some future directions for

the work and conclusions in Chapters 8 and 9.



Chapter 2

Related Work

The development of formal methods for proof representation and theorem proving
has both a rich history and a community that remains active. Much of this work is
in automated theorem provers such as Cog [105], NuPRL [71], Isabelle [108], and
PVS [84].

The cores of these systems, where issues such as proof representation and the
underlying proof logic must be considered, have been well studied and established.
However, there are other distinctive characteristics that are paramount to the
development of these systems that continue to be important research questions,
including proof reuse, proof library representation, and proof tactics. These issues
have a serious impact on system usability, both for presenting information to a
user and for implementing the system efficiently. We examine the work related to

each one of these considerations in detail.

2.1 Proof Reuse

Reusing proofs is important for several reasons. The most obvious is that one
does not want to have to perform sieps repeatedly when they can be done once
and referred to later, From the perspective of an automated theorem prover, time
iz saved in reuwsing completed proof steps. The other important reason for proof
reuse is that discovering proofs with the same steps helps to establish relationships
between theorems, including some that might otherwise go unnoticed.

Carbonell suceinetly states the four aspects of problem solving that are relevant

to proof reuse, where we transfer information from one proof, called the souwrce
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proof, to another proof, called the target proef [25]:
1. How does one define similarity in proofs?
2. What knowledge is transferred from the source proof to the target proof?
3. How is this transfer accomplished?

4. How does one choose related source proofs given a target proof?

2.1.1 Proof Analogy

A popular method for proof reuse initially explored by mathematicians and artifi-
cial intelligence researchers is the idea of proof anaclogy, which tries to map steps
from a source proof into steps in a target proof using hints in the relationship
between the source theorem and target theorem.

Early work by Kling [56] and Munyer [87] focused on using the source proof to
find inference rules that would be relevant for the target proof. Kling's technique
can find analogous inference rules for the target proof, but is not designed to use
the structure of the source proof to guide the decisions made in the use of these
rules. Munyer's work, howewver, is able to use the order of inference rules in the
souree proof in order to guide the target proof.

A severe limitation of these approaches ias that they define similarity in a purely
syntactic sense; syntectic analogy can only discover, for instance, that the proof “if
z and ¥ are even, then z+y is even” is related to the proof “if ¥ and y are odd, then
rey is odd.” Several others explored other notions of analogy in order to make the
technigue more powerful, both in finding similar theorems and in applying their

proofs.
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Carbonell worked on transgformational analogy and derivational analogy in the
context of general artificial intelligence problem selving techniques [253]), Car-
bonell’s work dealt primarily with the third element in our list abowve; but his
work also has implications for choosing related thecrems and procfs. We talk
about his work as it would be applied to theorem proving. Both transformational
analogy and derivational analogy attempt to solve a proof by looking at sequences
of proof steps that were successful in some previous proof and using them in the
target proof. They require the storage of previously completed theorems and their
proofs.

Transformational analogy looks for similarity in the statements of theorems,
copies the proof for a relevant source theorem, and attempts to adapt the proof
to solve the target theorem. The notion of similarity here is vague; it could be as
simple as syntactic matching or could use some more complicated metric defined
ko & user.

In contrast, derivational analogy matches source and target proofs instead of
theorems. One starts searching for steps in the target proof and then looks for
a source proofl that has a similar pattern of search. The search procedure for
the source proof is then copied to the target proof and used to find a solution.
Derivational analogy requires that the proof steps that failed be stored with a
proof, in addition to the steps that succeeded. By using the steps from the source
proof, one creates a proof plan, which guides the steps of searching for a proof of
the target theorem [22).

Both of these technigues can be inefficient given a complex similarity metric and
large library of previous proofs. The library becomes particularly large when using

derivational analogy. Cabonell applied his techniques primarily to natural language
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processing and looked at the library of knowledge in that context. Newvertheless,
it is obvious that these techniques applied to proof reuse require a well organized
library of theorems and proofs.

Melis and Whittle have worked extensively on applying analogy to inductive
proofs, particularly for the proof planner CLAM [79, 110, 81, 80, 82]. They split
analogy into two forms: internal enalogy, which looks for similar subgoals within
a single proof, and external analogy, which looks for similar theorems outside the
context of the current proof. Jamnik demonstrated that Melis and Whittle's tech-
nique applies to non-inductive proofs as well [49].

Internal analogy tries to make the search for a proof more efficient by reducing
the number of calls to CLAM’s critic, which attempts to revise terms on which
induction is being performed when the induvetive proof can no longer make progress.
When CLM needs to choose a term on which to perform induction, its analogy
system suggests one based on the terms chosen by previous calls to the critic.
The suggestions, if successful, prevent the critic from having to search for a term
on which to perform induction and prevent the system from performing induetive
proofs that will inevitably fail. The use of internal analogy has been able to produce
measurable reductions in the time it takes to perform an inductive proof in CLAM.

External analogy also attempts to reduce the need for search in CLAM. Melis
and Whittle implemented an analogy procedure, ABALONE, on top of CLAA.
ABALONE attempts to find a second-order mapping from source theorems to
target theorems. Theorems are represented as syntactic trees in which paths con-
taining existentially quantified variables and induction variables, called rippling
puths, are marked. Completed theorems—including decisions made in the planning

of the theorem's proof, called justifications—are maintained in a library. If o useful



